On Inexact Newton Directions in Interior Point Methods for Linear Optimization
نویسنده
چکیده
In each iteration of the interior point method (IPM) at least one linear system has to be solved. The main computational effort of IPMs consists in the computation of these linear systems. Solving the corresponding linear systems with a direct method becomes very expensive for large scale problems. In this thesis, we have been concerned with using an iterative method for solving the reduced KKT systems arising in IPMs for linear programming. The augmented system form of this linear system has a number of advantages, notably a higher degree of sparsity than the normal equations form. We design a block triangular preconditioner for this system which is constructed by using a nonsingular basis matrix identified from an estimate of the optimal partition in the linear program. We use the preconditioned conjugate gradients (PCG) method to solve the augmented system. Although the augmented system is indefinite, short recurrence iterative methods such as PCG can be applied to indefinite system in certain situations. This approach has been implemented within the HOPDM interior point solver. The KKT system is solved approximately. Therefore, it becomes necessary to study the convergence of IPM for this inexact case. We present the convergence analysis of the inexact infeasible path-following algorithm, prove the global convergence of this method and provide complexity analysis.
منابع مشابه
Global convergence of an inexact interior-point method for convex quadratic symmetric cone programming
In this paper, we propose a feasible interior-point method for convex quadratic programming over symmetric cones. The proposed algorithm relaxes the accuracy requirements in the solution of the Newton equation system, by using an inexact Newton direction. Furthermore, we obtain an acceptable level of error in the inexact algorithm on convex quadratic symmetric cone programmin...
متن کاملAn infeasible interior-point method for the $P*$-matrix linear complementarity problem based on a trigonometric kernel function with full-Newton step
An infeasible interior-point algorithm for solving the$P_*$-matrix linear complementarity problem based on a kernelfunction with trigonometric barrier term is analyzed. Each (main)iteration of the algorithm consists of a feasibility step andseveral centrality steps, whose feasibility step is induced by atrigonometric kernel function. The complexity result coincides withthe best result for infea...
متن کاملA full Nesterov-Todd step interior-point method for circular cone optimization
In this paper, we present a full Newton step feasible interior-pointmethod for circular cone optimization by using Euclidean Jordanalgebra. The search direction is based on the Nesterov-Todd scalingscheme, and only full-Newton step is used at each iteration.Furthermore, we derive the iteration bound that coincides with thecurrently best known iteration bound for small-update methods.
متن کاملA nonmonotone inexact Newton method
In this paper we describe a variant of the Inexact Newton method for solving nonlinear systems of equations. We define a nonmonotone Inexact Newton step and a nonmonotone backtracking strategy. For this nonmonotone Inexact Newton scheme we present the convergence theorems. Finally, we show how we can apply these strategies to Inexact Newton Interior–Point method and we present some numerical ex...
متن کاملInterior Point Methods with Decomposition for Solving Large Scale Linear Programs
This paper deals with an algorithm incorporating the interior point method into the Dantzig-Wolfe decomposition technique for solving large-scale linear programming problems. The algorithm decomposes a linear program into a main problem and a subprob-lem. The subproblem is solved approximately. Hence, inexact Newton directions are used in solving the main problem. We show that the algorithm is ...
متن کامل